The MERIT High-Power Target Experiment

3rd High-Power Target Workshop

Bad Zurzach, Switzerland

September 11, 2007

Harold G. Kirk Brookhaven National Laboratory

The Neutrino Factory Target Concept

Harold G. Kirk

3rd HP Target Workshop

Tracks E>20 MeV

Optimizing Soft-pion Production

Courtesy: N. Mokhov

Harold G. Kirk

The MERIT (nTOF11) Experiment

MERcury Intense Target

3rd HP Target Workshop

Sectional view of the MERIT Experiment

MERIT Scientific Goals

Milestone towards demonstration of a 4MW target concept

Study MHD effects of pion capture scheme with Hg-jet and 15T solenoid

Study jet disruption and cavitation by varying the PS spill structure MERIT: 180 J/g

- 30TP@24GeV protons
- 1cm diam. 20m/s Hg-jet
- 1.2×1.2 mm² beam size rms

Pump-Probe with Particle Detectors

Goals of the MERIT Experiment

- Study single beam pulses with intensities up to 30TP
- Study influence of solenoid field strength on Hg jet dispersal (B₀ from 0 to 15T)
- Study 50 Hz operations scenario
- Study cavitation effects in the Hg jet by varying PS spill structure—Pump/Probe

3rd HP Target Workshop

• Confirm Neutrino Factory targetry concept

Profile of the Experiment

3rd HP Target Workshop

- 14 and 24 GeV proton beam
- Up to >30 x 10^{12} protons (TP) per 2µs spill
- Proton beam spot with $r \le 1.5 \text{ mm rms}$
- 1cm diameter Hg Jet
- Hg Jet/proton beam off solenoid axis
 - Hg Jet 33 mrad
 - Proton beam 67 mrad
- Test 50 Hz operations
 - 20 m/s Hg Jet

Key Experimental Sub-systems

15T Pulsed Solenoid 5 MVA Power Supply LN₂ Cryo-system **Hg Jet Delivery System Proton beam (24 and 14 GeV) Diagnostics Optical Particle Detection**

Harold G. Kirk

The Pulsed Solenoid

The Hg Injection System

- Syringe pump Hydraulic power unit w/control system
- **Optical diagnostic system**
- **Baseplate support structures**

The Mated Systems at MIT

Harold G. Kirk

Optical Diagnostics in Secondary Containment

One set of optics per viewport

T.Tsang, BNL Harold G. Kirk

Hg jet runs with pulsed solenoid March 3, 2007 @ MIT

Images of Mercury Jet vs. Magnetic Field (V=15m/s)

Viewport 1

Viewport 3

0 T

15 T

NATIONAL LABORATORY H.Park, BNL

Harold G. Kirk

Site of experiment at CERN

Harold G. Kirk

The Tunnel Complex

3rd HP Target Workshop

Installed in the CERN TT2a Line

NATIONAL LABORATORY 3rd HP Target Workshop

Proton Beam Characteristics

- PS will run in a harmonic 8 mode
- We can fill any of the 8 rf buckets with sub-bunches at our discretion.
- Each microbunch can contain up to 5 TP.
- Fast extraction can accommodate entire 2µs PS fill.

3rd HP Target Workshop

- Single turn extraction at 24 GeV
- Partial/multiple extraction possible at 14 GeV
- Beam on target October 2007

Run plan for the CERN PS beam

The PS Beam Profile allows for:

- Varying beam charge intensity from 5 TP to > 30 TP.
- Studying influence of solenoid field strength on beam dispersal (vary B₀ from 0 to 15T).
- Study possible cavitation effects by varying PS spill structure (Pump/Probe)

3rd HP Target Workshop

Summary

The MERIT experiment is designed to confirm the Neutrino Factory/Muon Collider targetry concept. It will:

- validate a target solution for a 4MW primary proton beam facility
- demonstrate operational rep rates up to 50Hz
- determine acceptable micro-bunch spacing within the primary proton beam pulse
- provide a solution for an intense secondary muon beam

