MERIT Scientific goals and importance

BNL, CERN, KEK
MIT, ORNL,
Princeton
University, RAL

- High power pulsed targets
 - Introduction
 - Beyond solid targets
 - Pion collection
 - Preliminary experiments
- MERIT (n-ToF-011)
 - Experimental setup
 - Scientific goals
- Conclusion and outlook

Why are we discussing liquid targets?

Stress induced plastic deformation

CERN-PS-booster 30 Tp (1 GeV) on ISOLDE targets:

Shock induced rupture of confinement

Targetry related Issues or new technologies to be established

- Molten metal targets
 - Hight pressure high velocity molten metal fluid dynamics
 - Cavitation in the piping
 - Corrosion
 - · Recuperation of high velocity splashes
 - Purification of the molten metal circuits
 - Phase transition
 - MHD of molten metal jets
- Solid targets
 - Effect of radiogenic chemical impurities on material properties
 - High velocity mechanics under vacuum
 - Compaction of Ta-beads
- Component reliability or life time vs. exchange time
 - Horns
 - 20 T magnets
- Simulation codes
 - Detailled Energy deposition
 - Shock transport elastic-plastic
 - 3d-Shocks in liquids with MHD
- Optical measurement techniques in high radiation environment
- Activation of components, inventory of specific activities vs. time
 - Radioactive waste handling
 - Internal transport, intermediate storage
 - End disposal
- Experimental areas dedicated to target tests (highest radiotoxicity)

MW target: Heat flow enhanced by mass flow

- He-cooling forced convection
 - Ta-beads (< 1MW / unit)</p>
- New material for each proton pulse (20-40 kg/s)
 - Chain saw, bullets,
 - Levitating rings (Radiation cooling)
 - Molten metal Jets (Molten metal convection in remote heat exchanger)

Molten metal jets were proposed to:

- a) Avoid deformation of solids or high speed mechanics under vacuum
- b) Reduce the effects of modification of the material constants with irradiation
- c) Attempt to increase the power density of the beam beyond any solid.

Pion capture with a magnetic Horn (SPL 2.2 GeV)

Pion capture via 20 T magnetic field (BNL 24 GeV p)

Maximize Pion/Muon Production

- Soft-pion Production
- High Z materials
- High Magnetic Field
- Hg jet tilted with respect to solenoid and to p-beam axis

Needs for nufact benchmarks and simulation, Issues

- Molten metal jet targets
 - Observation of shock waves
 - Observation of Magneto-hydrodynamics effects
 - Pressure waves or Cavitation induced surface disruption ?
 - Simulation (shocks, cavitation and MHD)
- Shock effect of the hadronic shower on surrounding material
- Collecting ~50 m/s splashes

BNL-CERN thimble test

1st P-bunch 1.8×10¹² ppb dt: 100 ns

24GeV p⁺

Timing: 0.0, 0.5, 1.6, 3.4 ms, shutter 25 µs

 $V_{splash} \sim 20-40 \text{ m/s}$

Hg-Jet test BNL E-951

25th April 2001 #4

Pictures timing

[ms]

0.00

0.25

0.50

1.75

4.50

10.75

29.75

p-bunch: 3.8×10^{12} ppb, 26 GeV

150 ns

Hg- jet: diameter ~ 1 cm

jet-velocity ~ 2.5 m/s

splashes velocity ~ 10 m/s

22 November 2005

MHD damping of the instabilities of a Hg-jet

Ref: A. Fabich PhD. thesis TUV

The radius is measured at a fixed position, the jet velocity is 11 m/s

Simulation: R. Samulyak BNL

10 T

Mercury target: evolution after the third proton pulse (20 - 35 microseconds)

Brookhaven Science Associates U.S. Department of Energy

R. Samulyak

Water jet ripples generated by a 8 mJ Laser cavitation bubble

(~50 μs after collapse)

Ref: E. Robert Dipl. thesis EPFL

Most of the experimental data was gained via high speed optical methods. bis repetita for MERIT

The MERIT Experiment do closely match the nominal parameters of the v-factory

- 24 GeV Proton beam
- Up to 28 x 10¹² Protons (TP) per 2 μs spill
- Proton beam spot with r ≤ 1.5 mm rms
- 1 cm diameter Hg Jet
- Hg Jet/Proton beam off solenoid axis
 - Hg Jet 100 mrad
 - Proton beam 67 mrad
- Test 50 Hz operations
 - 20 m/s Hg Jet
 - 2 spills separated by 20 ms

Peak Energy Deposition

Neutrino Factories

- Hg target; 1 MW 24 GeV proton beam; 15 Hz
 - 1cm diameter Hg jet; 1.5mm x 1.5mm beam spot
 100 J/g
- Hg target; 4 MW 2.2 GeV proton beam; 50 Hz
 - 2cm diameter Hg jet; 3mm x 3mm beam spot 180 J/g

E951

- Hg target; 4 TP 24 GeV proton beam;
 - σ_v =0.3mm x σ_x =0.9mm rms beam spot 80 J/g
- CERN PS (projected)
 - Hg target; 28 TP 24 GeV proton beam
 - 1.2mm x 1.2 mm rms beam spot 180 J/g

MERIT location: In the transfer tunnel between the PS-complex and the n-ToF target

Cryogenics

LN₂ and N₂ gas stored on the surface.

Cold valve box in the TT2 tunnel.

Exhaust gas vented into TT10 tunnel through filtration system.

~ 150 liters of LN₂ per Magnet pulse.

Magnet flushed with N₂ prior to each pulse, to minimize activation of N₂.

The Hg Jet primary confinement

Snout inserted into 15 T cryo-magnet.

Mercury inventory ~ 20 liters.

Hydraulic system can deliver up to 1000 psi, to propel mercury at ~ 20 m/s

Observation chamber

Data acquisition 1: Hg-Jet shadow recorded via fiber optics high speed photography

Data acquisition 2: time structure of high energy particle flux

PS complex MDs required to prepare beam settings

- Numerous different beam tuning and timing
 - Variation of:
 - Intensity, energy
 - Beam position on target
 - Beam spot size
 - Pump-probe method
- Hint to reach high Intensity
 - Consider running PS in harmonic 16
 - increases intensity to 5*10¹² p⁺ per 1/8 of PS (< 40 Tp)
- 50 Hz operation
 - Operate at 14 GeV/c only (Kicker could, but not the septum)
 - Like pump-probe method, but extend bunch-to-bunch distance extensively (milliseconds)

MHD + shock Simulations BNL (Samulyak)

Gaussian energy deposition profile Peaked at 100 J/g. Times run from 0 to 124 μ s, B = 0 T

Jet dispersal at $t = 100 \mu s$ with magnetic Field varying from 0 to 10 Tesla

Axial symmetric splashes suppressed by MHD forces

__RIT-collabora

MERIT will:

- Produce benchmarks for Neutrino Factory targetry design tools
 - Study MHD of the Hg jet with nominal size and velocity
 - Study the origin of jet disruption by varying PS spill structure "Pump / Probe"
- Validate the Neutrino Factory targetry concept
 - Effects of single beam pulses with realistic proton energy, timing, intensity and energy density
 - Influence of solenoid field strength on Hg jet dispersal (MHD shock damping)
 - Information on the 50 Hz operations scenario by recording 2 pulses at 20 ms interval.
- Define potential issues and open the path to engineering study
- Set a milestone towards 1-4 MW pion production targets
- First beam expected April 2007

Thanks to all contributors