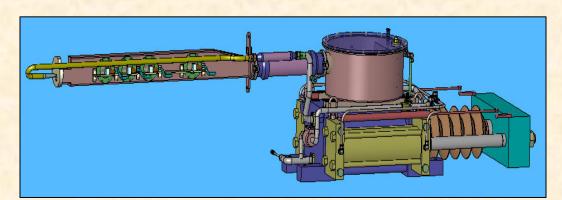


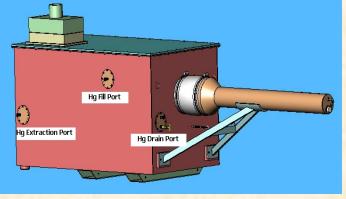
Target System Operations and Hg Handling

P.T. Spampinato V.B. Graves

MERIT Hg System Safety Review CERN June 19-20, 2006

Outline


- Containment Boundary Leak Check
- Filling and Draining Hg
- Air Filtration (Hg Vapor)
- Off-Normal Conditions
- Equipment for Hg Handling
- Equipment Maintenance


Containment Leak Check

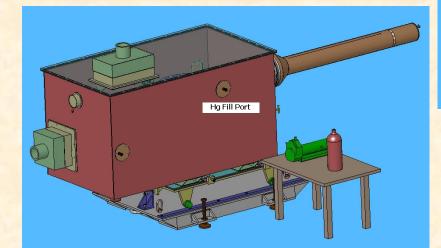
- Primary containment will be pressurized at ORNL with 1-atmos nitrogen prior to water tests
 - Each fitting and welded joint will be soap-bubble checked followed by 24-h pressure decay

- Secondary containment will be pressurized with 2-3 psig nitrogen
 - Bulkhead penetrations, joints, and both filter/vent ports will be soapbubble checked

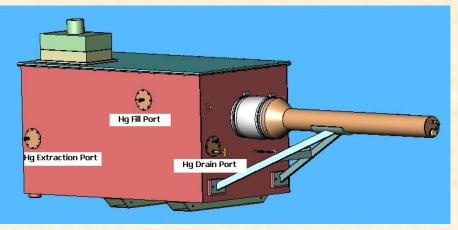
Primary Enclosure Oak Ridge National Laboratory U. S. Department of Energy

Secondary Enclosure

Containment Leak Check (cont.)


- Leak check will be done again at MIT for primary and secondary but only the pressure decay test for primary containment
- Same for CERN ... but
- ... adjustments to laser optics may be required after transport
 - Requires opening secondary containment
 - Could this be done prior to installation in the MIT magnet lab, and installation in TT2A tunnel ??

Filling and Draining Hg



- Basic Requirement: filling and draining must be achieved without opening secondary containment
- Equipment Needed
 - Peristaltic pump
 - Tygon® tubing
 - Steel flasks/plastic bottles

Pump/Flask Setup

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Secondary Enclosure

Hg Transfer By Pumping

- Peristaltic pump tests with water and Hg were successfully conducted for TTF (Appendix I)
- Pump flow rate for water was a maximum of ~ 0.15 liters/sec
- Pump flow rate for mercury was 0.03 l/s based on ~volume and ~time measurements
- The measured flow rate for Hg equates to emptying a flask in ~75 seconds

Hg Fill Procedure

- Place the pump and flask at an elevation higher than the fill port if possible
 - Flask is in a gauze-lined tray
- Weigh and record weight of each flask before the fill operation
- Siphon Hg from the flask until suction in the tube is lost
- Record the weight of the empty flask
- Displaced air is vented through primary filter (and then into snorkel)

OAK RIDGE NATIONAL LABORATORY

- Local air is continuously sampled with the Jerome monitor
- Secondary enclosure is unopened

U. S. DEPARTMENT OF ENERGY

Hg Drain Procedure

- Place a 3-liter bottle in a gauzelined tray under the drain port
- Using the hand valve for flow control, gravity-drain Hg up to the 2-liter mark
 - Air will be allowed to vent into the Fill Port during the operation
- Transfer 2-liters of Hg from the bottle into a flask
- Install the steel plug and weigh the flask
- Remove Hg remaining in the sump tank or drain line using the pump

Waste Materials

- All waste materials generated during Hg fill and drain operations ... gloves, gauze, drip shields, etc. will be double-bagged, taped and placed in the Satellite Accumulation Area (SAA)
 - The SAA is a 55-gal. drum, properly marked, and having a locking cover

Satellite Accumulation Area

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Air Filtration (Hg Vapor)

- Secondary containment has two sulfur-impregnated charcoal filter assemblies
 - Primary filter is 432 x 255 x 51 mm
 - Secondary filter is 267 x 267 x 38 mm
- Same filter as the Scavenger® snorkel
- Filter ports (5"diam.) normally closed
- Filter efficiency 99.9% per mfgr.
 - ORNL tests will verify filter effectiveness
- Double filtration is possible if needed using the snorkel

Dose Rate Summary Table

Component	Absorbed Dose (Gray/3*10 ¹⁵ protons)	Residual Dose Rate – at Shut Down (mSv/h 3*10 ¹⁵ protons/30day)	Residual Dose Rate – at Shut Down (mrem/h)	Residual Dose Rate – 100 Hrs Cool Down (mSv/h 3*10 ¹⁵ protons/30day)	Residual Dose Rate – 100 Hrs Cool Down (mrem/h)
Equipment in solenoid bore	$10^4 - 10^6$	1	100		
Equipment in secondary enclosure	$10^2 - 10^4$		-	-	-
Syringe Pump	- T-	$10^{-2} - 10^{-3}$	1 <mark>.0</mark> – 0.1		-
Top of secondary enclosure	-	$10^{-2} - 10^{-4}$	1.0 – 0.01	(* -) T	
Hg vapor monitor (top of enclosure)	14.0 (<5-10 krad for electronics)	0.95	95.0	<2.70 x 10 ⁻³	<0.27
Hydraulic fluid	125	0.023	2.30	<1.13 x 10 ⁻⁴	<0.01
Ventilation filter in secondary encl. (1)	505	1.55	155.0	<9.70 x 10 ⁻⁴	<0.09
Mercury	$10^1 - 10^2$	$10^{-1} - 10^{-2}$	10.0	$30 \ge 10^{-3} (2)$	3.0 (2) (3)

(1) Pure carbon material used for calculation; impregnated sulfur not included.

(2) 1 day of decay at 1 meter distance; M. Magistris and M. Silari, EDMS No. 601754,

CERN Technical Note CERN-SC-2005-049-RP-TN, June 16, 2005. OAK RIDGE NA(3) ANAL month, Obse Taken is 0.1 mrem/h. **U. S. DEPARTMENT OF ENERGY**

Off-Normal Conditions

1) Vapor leak into secondary containment

- Secondary enclosure is continuously monitored for vapor with Jerome 431-X
 - Monitor located in TT2 (verify remote operation with ORNL tests)
 - Threshold warning set for 0.0125mg/m³
- If threshold level is exceeded
 - Check conductivity probe and other sensors incl. vapor monitor for tunnel area
 - If reading ok, may conclude
 - Minor leak from primary containment, or
 - False-positive signal from vapor monitor
- Visually inspect w/ health physics oversight ... continue beam tests

- 2) Hg leak into secondary containment
- Detected by vapor monitor, conductivity probe
- Confirm with visual inspection after suitable cool down period ... 1 week ...
- Cease test operations ... wait up to 1 month for Hg cool down to <10⁻² mSv/h (<1 mrem/h)
- Extract Hg from target loop and refill flasks
- Health Physics surveillance will be required

3) System Overpressure

- Nozzle blockage is the only reason for a system overpressure
 - Not a very credible occurrence, but ...
- Hydraulic system pressure would increase above its nominal level of 200 bar
 - Pump relief valve set for 220 bar would open
 - Hydraulic fluid would divert from pump directly in the reservoir preventing overpressure of either the hydraulic loop or the Hg loop

4) Power Failure

- Loss of electric power to Hg delivery system or hitting the "E-Stop" immediately shuts down the pump system
 - Flow of jet ceases
- The possibility of a "water hammer" shock caused by the separation of flowing Hg will be investigated at ORNL

5) Loss of Network Connectivity

- Labview® hardware has an internal system controller that provides network connectivity to the laptop computer
- A "watchdog" timer detects loss of communication
- If loss is detected the system is configured to power down the pump system and place the equipment in an inoperable state

Equipment to Support Hg Operations

Item	Comments		
Vacuum Cleaner - Tiger Vac®	At Princeton; will be sent to MIT		
Portable Snorkel - Scavenger®	At Princeton; will be sent to ORNL		
Spare Filters	Sulfur impregnated charcoal & HEPA		
	at Princeton; will be sent to ORNL		
Vapor Monitor	Procurement by Princeton		
Vapor Monitor Calibration Kit	Procurement by Princeton		
55-gal. Drum	Satellite Accumulation Area (SAA)		
Plastic Sheeting - roll	Heavy gauge plastic sheeting - 10-ft. wide		
Peristaltic Pump	Available from ORNL		
Tygon Tubing			
Hg Flasks (qty. TBD)	U.S. Dept. of Transportation approved; standard 76-lb. steel flask		
Merc-X Cleaning Solvent			
Sponges			
Plastic Buckets			
Plastic Pans			
Teflon Tape (yellow)	Sealing flasks; yellow tape is more durable than white		
Gauze - roll			
Small Tools	Wrenches, screwdrivers,		
Bungee Cords	Assorted lengths		
Vinyl Tape	Yellow, 4 rolls		
Plastic Bags	Assorted sizes - 1 gal. to 20 gal.		
Plastic Bottles	1-, 2-, 3-liter sizes - 4 of each required		
Lab Coats			
Shoe Covers			
Safety Glasses			
Ear Plugs			
Tyvek Hooded Suits			
Nitrile Gloves			
Full Face Mask w/ Hg Cartridges			
Miniature Aspirator Pump			
Flashlights			
Swagelok Quick Disconnect Fittings			
Scale	Digital - weighing Hg		
Hand Pump	Transfer hydraulic fluid		
Plastic Bin - 50 gal.	Storage chests for misc. equip 2 required		
Berm Material	30-ft. required		

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Equipment Maintenance

- There is no scheduled maintenance for the target system
- Visual inspections, check performance of sensors, and test the emergency stop in the control system, will be made routinely
- Initial assembly of the equipment and qualification will be done hands on at ORNL
- After beam operations commence, the equipment design allows for minimal personnel contact to achieve ALARA

Summary and Conclusions

- Experience and the procedures developed over 6 years of operating SNS/TTF are the basis for the design and operation of the MERIT target system
- Target system has features that allow Hg fill/drain without opening secondary containment
- Secondary containment provides the boundary for liquid Hg or vapors if a primary containment failure occurs
 - Contains filter assemblies to deal with displaced air during fill and drain operations
 - Visual inspection capability
- System operating characteristics will be quantified during ORNL and MIT testing

