

The Proposed TT2A Target Experiment

A.Fabich CERN AB/ATB

Contents

- Physics goal
 Liquid target concept
- Experiment in TT2A
 - layout
 - Safety
- Time schedule

http://proj-hiptarget.web.cern.ch/

Producing particles of n-th generation

- e.g. pions, muons, neutrinos or radioactive isotopes
- Super-beam
- Eurisol
- Neutrino factory

With a 4 MW proton beam on a target

- conversion tool
- provide unstable secondary particles

Liquid Targets with free surface

- withstand the power of multi-MW proton machines
- melting, vaporization, beam-induced pressure/shocks, radiation damage

Solid targets: not viable above a beam power of 1 MW Contained liquid targets (e.g. SNS): pitting, failure of beam windows

• jet

avoid beam window

•	Mercury	increased meson yield for high-Z materials,
		liquid at ambient temperature
•	v~20 m/s	live with target rupture and
		replace target at 50 Hz
•	D= 1-2 cm	Optimized for re-absorption of mesons
•	B=20 Tesla	collection of secondary mesons
		with B=0 Tesla study case of magnetic horn

??? What is the impact on the jet target by

• 4 MW proton beam

1.Dec 2004 RPC/2004/XVI/144 • 20 T solenoidal field

Proposal

- LOI (Nov03) and proposal (May04) submitted to INTC (RB)
 - perform a proof-of-principle test
 - NOMINAL LIQUID TARGET
 - for a 4 MW proton beam
 - in solenoid for secondary particle capture
 - single pulse experiment
 - simulates 50 Hz operation
 - minimized integrated number of protons

INTC (spring) and research board (July):

"... recommended for approval, but further information on the support for the proposed test from the relevant scientific community, on the safety issues, and on the resources requested from CERN."

Collaboration responded and waits for RB 2nd December.

1.Dec 2004 RPC/2004/XVI/144 A.Fabich, CERN AB/ATB

Participating Institutes

- BNL
- CERN
- KEK
- MIT
- ORNL
- Princeton Univ.
- RAL

Experimental Site

	PSB/ISOLDE	GHMFL	BNL/AGS	PS/TT2A	NuFact
p+/pulse	3 10 ¹³		0.4 10 ¹³	2.5 10 ¹³	3 10 ¹³
B [T]		20		15	20
Hg target	Static	15 m/s jet	2 m/s jet	20 m/s jet	20 m/s jet
status	DONE	DONE	DONE	PROPOSED	DESIGN

BNL AGS capabilities

0.4 10¹³ per bunch

0.6 to 0.8 10¹³ foreseen (with bunch merging)

No multi-bunch single turn extraction (g-2 rebuild)

CERN PS capabilities

0.5 10¹³ per bunch normal operation

0.7 10¹³ multi-bunches foreseen (for CNGS)

Multi-bunch single turn extraction available

4 bunch flexible fill of PS from booster available (Pump-Probe capability)

Exp. area: TT2A

- provides needed space for in beam and peripheral installation

Exp. area: E951

- smallest impact on other beam users

1.Dec 2004 RPC/2004/XVI/144

CERN

Installations

A.Fabich, CERN AB/ATB

1.Dec 2004 RPC/2004/XVI/144 7

Installation TT2A tunnel

1.Dec 2004 RPC/2004/XVI/144

Mercury target

P-beam window View window Hg jet Primary containment Secondary containment Secondary containment

A.Fabich, CERN AB/ATB

Jet target

- D=1 cm
- V=20 m/s

System contains

- Mercury loop
 - Double containment
 - Pump
 - Reservoir
 - 6-8 I mercury
- Motor
- optical diagnostics

1.Dec 2004 RPC/2004/XVI/144

Parameters of Pulse Coil Precooled to 69 K and Energized at 600 V to 7200 A

- collecting device for mesons
- 80 K Operation to optimize for costs
- 15 T with 4.5 MW Pulsed Power
- 15 cm warm bore (L=1m)
- 4.5 ton

1.Dec 2004 RPC/2004/XVI/144

Auxiliaries

Power supply

Evaluating solutions "available" at CERN

1. Type ALICE/LHCb

2. Recently "old" WA power supply found, which needs refurbishment - evaluation ongoing

Cryogenics

Using common standards

Currently designing general layout and flow scheme

Upcoming: first iteration with SC on flow scheme and operation

1.Dec 2004 RPC/2004/XVI/144

1.Dec 2004

RPC/2004/XVI/144

Diagnostics

- Optical System
 - Direct observation of

- Particle detector
 - Interaction efficiency

- Does cavitation reduce the secondary particle yield?

Varied parameters

parameters to vary:

- Magnetic field (0-15 T)
- Pulse intensity (1-25 10¹² p.o.t./extraction)
- Pulse length (0.5-2 μ s)
- Beam position (±5 mm)
- Total number of protons on target (no tuning):
 < 3 10¹⁵ (~100 pulses)
- Needs ~2 weeks of beam time
 - Does not include time for beam tuning

1.Dec 2004 RPC/2004/XVI/144

Safety

- Radiation
- Mechanical safety
- Mercury
- LN2 cooling
- High magnetic field
- .
- "Waste" management

Procedure established:

- Define requirements/specs
- Prepare layout/design
- Safety review

SAFETY CONTACT PERSON FOR ALL MATTERS:

Herve Buret Tel.: 160013 (replacement since Oct.2004, former Bruno PICHLER tel: 16 0889 or 73362

	Responsible		
DSO of AB	Paolo CENNINI		
General Safety	Bruno PICHLER		
Radiation	Thomas OTTO		
Gas and Chemicals	Jonathan GULLEY		
Electricity			
Emergency stops	Fritz SZONCSO		
Magnetic Field			
Laser			
Fire	Fabio CORSANEGO (material also J.Gulley)		
Material			
Mechanical safety	Alberto DESIRELLI		
	also Maurizio BONA		
Cryogenics	Gunnar LINDELL		

----- Memos available ----

1.Dec 2004 RPC/2004/XVI/144

faci

Mercury loop

- Construction at ORNL
- 6 to 8 Liter mercury
- Experience

 at ORNL and CERN
- Double containment
- ISO 2919 "sealed sources"

Radiation

- ALARA
- Minimum number of integrated protons
- Activation of area and mercury

Chemicals

Safety

- Minimum amount of mercury
- Continuous vapor monitoring
 - Inside secondary containment
- Define procedures/operation

1.Dec 2004 RPC/2004/XVI/144

Mechanical safety

- According to CODAP2000/ASME
- Double containment
- Pressure vessel

Cryogenics

- Standards used
- ODH study

- Beam attenuator
 - to protect nToF target
 - controls, interlocks, timing
- Waste management
- decommissioning

Decommissioning

- removal of all equipment
 - Approx. 2 weeks to restore beam line
- "Waste" management
 - Activated mercury
 - Solenoid
 - Power supply
 - Mercury loop

returned to ORNL

shipped to Japan considered for further use goes with solenoid reused in Japan/US?

Time schedule

- 2003
 - Autumn LOI
- 2004
 - Spring proposal to INTC
 - Summer detailed study at CERN (ongoing)
 - Summer solenoid construction
 launched

• 2005

- January solenoid delivered to MIT A.Fabich, CERN AB/ATB RPC/2004/XV/Stopping purchase of power supply

- proof-of-principle test
 - jet target in a magnetic field exposed to a proton beam
 - Synergies of a target for a neutrino factory with super-beam, Eurisol,
- TT2A is a highly suitable location
 - to perform this single pulse experiment
 - limited number of pulses and integrated number of protons
 - Major technical and safety issues have been discussed and positively concluded
- Upcoming:
 - Input by RPC
 - approval of research board?