Time structures for a mercury target test beam

Summary of discussions with M. Giovannozzi, S. Hancock and E. Metral

- Approach without batch compression :
 - Four PS Booster rings run with h_{PSB} =1 and deliver beam to the PS running with h_{PS} =8 :
 - Every second bucket is filled for a "long" bunch train or,
 - Into adjacent h=8 buckets for "short" bunch trains.
 - After acceleration to 20 GeV/c (or 24 GeV/c ?) and extraction one obtains :
 - 4 bunches (with length ~50ns) spaced by 525 ns or
 - 4 bunches (with length ~50ns) spaced by 262 ns
 - Setting-up :
 - synergies with studies (double batch injection) in view of CNGS.
 - at least 2.0×10¹³ protons per pulse look feasible with reasonable additional effort (beam time and manpower).

- AD like batch compression for shorter bunch trains :
 - Procedure :
 - Injection of 4 bunches into adjacent h=8 buckets,
 - Acceleration to 20 GeV/c (or 24 GeV/c ?),
 - Batch compression by changing harmonic number : h=8 \rightarrow h=10 \rightarrow h=12 \rightarrow h=14 \rightarrow h=16 \rightarrow h=18 \rightarrow h=20,
 - No bunch compression (as done for AD),
 - Would yield 4 bunches with a length ~50 ns with a minimal spacing of ~105 ns
 - Maximal intensity : 1.5 10¹³ protons per pulse (longitudinal acceptance at bunch compression limits)
 - Setting-up:
 - Since AD works at 26 GeV/c, batch compression to be setup,
 - > might require significant effort and beam time for setting-up.