

nToF11: The Multi-MW target experiment in TT2A

A.Fabich CERN AB-ATB

http://cern.ch/proj-hiptarget

APC, June 2005

- Collaboration
- Target concept of liquid metal jet
- Installation in TT2A
 - Mercury loop (target), solenoid, beam line, power, cryogenics, safety
- PS beam request
- Time schedule

http://cern.ch/proj-hiptarget

- BNL, CERN, KEK, ORNL, Princeton Univ., RAL
 - Spokespersons: K. Kirk (BNL) and K.McDonald (Princeton)
 - Local CERN contact: A. Fabich, H. Haseroth, J. Lettry
- Experiment approved as nToF11
 - installed on FTN beam line upstream of nTOF target
 - No scientific correlation with nTOF (1-10)
- also referred to as MERIT experiment
 - MERcury Injected Target
 - study feasibility of the liquid jet target!

R&D of target concepts for these multi-MW proton beams needed

Solenoid (US)

B = 20 T at target

- Adiabatic focusing channel
- Two charges collected can be separated by RF

Magnetic Horn (CERN)

B=0 T at target

- Focuses only one charge state (required for super-beam)
- highly restricted space

Jet Target Concept

- Provide target system for a multi-MW proton beam
- Target volume replaced at the p-pulse repetition rate
 - Deal with thermal management, radiation damage, thermal shock
- NO beam windows in contact with target material!

	ISOLDE	GHMFL	BNL	TT2A	NuFact
p+/pulse	3 10 ¹³		0.4 10 ¹³	2.5 10 ¹³	3 10 ¹³
B [T]		20		15	20
Hg target	static	15 m/s jet (d=4mm)	2 m/s jet (d=10mm)	20 m/s jet (d=10mm)	20 m/s jet (d=10mm)
	DONE	DONE	DONE	2007	DESIGN

What is the impact on the jet target by a 4 MW proton beam & 20 T field?

- Measure behavior of mercury jet and particle production as a function of beam parameters and magnetic field strength!
- Proof-of-principle test of a mercury jet target for MMW proton beams
- Bench mark for simulation codes

High Field Pulsed Solenoid

10

collecting device for mesons

- 80 K Operation to optimize for costs
- 15 T with 4.5 MW Pulsed Power
- 15 cm warm bore (L=1m)
- 4.5 ton

Parameters of Pulse Coil Precooled to 69 K and Energized at 600 V to 7200 A $\,$

Bob Weggel's 10-14 analysis of the LN2 magnet operation

- power cycle 15 seconds
- Cooling cycle of solenoid limits to a minimum repetition time of 30 minutes between two pulses!

- Reuse power converter from SPS extraction system towards West area
- To be installed in AD hall

Optical System

 Direct observation of jet behavior

BNL E951, H.Kirk et al.

Particle detector

- Simple scintillator(s)
- Covering small solid angle
- No particle ID
- measure rel. particle yield
- p⁺-beam Interaction efficiency
 - Does cavitation reduce the secondary particle yield?
 - Pump-probe method

Passed through safety reviews prior to approval

- Radiation
- Access
- Mechanical safety
- Mercury
- LN2 cooling
- High magnetic field
- **...**
- "Waste" management
- Decommissioning

Bruno Pichler Tel.: 160889			
	Responsible		
DSO of AB	Paolo CENNINI		
General Safety	Bruno PICHLER		
Radiation	Thomas OTTO		
Gas and Chemicals	Jonathan GULLEY		
Electricity			
Emergency stops	Fritz SZONCSO		
Magnetic Field			
Laser			
Fire	Fabio CORSANEGO		
Material	(material also J.Gulley)		
Mechanical safety	Alberto DESIRELLI		
	also Maurizio BONA		
Cryogenics	Gunnar LINDELL		

SAFETY CONTACT PERSON FOR ALL MATTERS:

14

extrapolate to higher beam power

allow systematic studies Magneto-hydrodynamics

Benchmark simulation

Range specifications

cavitation

codes

- US scenario: study IIA
- of v-fact design **CERN SPL design**

Based on nominal values

- Momentum
 - 24 GeV/c
 - **Pulse** intensity
 - Up to 32*10¹² p⁺/pulse
 - Pulse length
 - 0.05 to 10 microseconds
 - Pulse repetition
 - 20 ms
 - Spot size
 - $1.3 \text{ mm} < r_{rms} < 4 \text{ mm}$
 - Beam position scan
 - -5 mm < Dx/y < 5 mm

Magneto-hydrodynamics

Magnetic forces on eddy currents induced by inhomogeneous B-filed Aim: Study surface oscillations induced by proton beam.

(and other MHD effects)

Parameters:

- 0 T < B < 15 T</p>
- B=0 corresponds to magnetic horn!
 PS beam:
- 24 GeV/c
- 4 bunches
- Minimum spacing
- 1- maximum *10¹² p+/bunch

Frontier code, R. Samulyak et al.

- Requested: 24 GeV/c
 - US design is 24 GeV/c
 - achieve similar shower profile
 - achieve necessary energy deposition density

Machine	Energy	r spot rms	Intensity	dE/dx peak
	GeV	mm	p+	J/g
AGS 4MW	24	1.5	32	206
CERN SPL	2.2	3	260	181
CERN PS	24	1.2	28	215

Requested:

v-fact design is 32*10¹² protons/pulse

Intensity/bunch

"promised"

4 bunches à 5*10¹² protons

Profit from

- Double batch injection: 8 bunches at h=8?
- CNGS improvement?
- Other advancements?

Aim: Study cavitation process

Pulse length 0.05 - 10 μs

Pulse length

- PS machine
 - h=8
 - Bunch length 50 ns
 - Bucket distance n*250 ns
 - Limited to 2µs pulse length
 - kicker strength: no two kicks at 24 GeV/c
 - > 2µs pulse length
 - Operate at 14 GeV only and Multi-kick mode

- Aim: study 50 Hz operation
 - Extract two batches of high intensity separated by 20 ms
- PS machine
 - h=8
 - repetition rate of PS complex (1.2 s) not convenient
 - Bucket distance n*250 ns
 - Extract two batches in multi-batch mode
 - Operate at 14 GeV/c only
 - Multi-kick mode

Aim: achieve nominal beam spot size and/or energy density

- Nominal r_{rms}=1.5 mm (US scenario)
- Requested: r_{rms}=1.2 mm
 - Reach SPL energy density

Machine	Energy	r spot rms	Intensity	dE/dx peak	
	GeV	mm	p+	J/g	
AGS 4MW	24	1.5	32	206	
CERN SPL	2.2	3	260	181	
CERN PS	24	1.2	28	215	

- Aim: study effect of misalignment
- Vary position of beam in the range of the target radius
 - -5 mm < ∆x/y < 5 mm</p>
 - Both planes needed
 - as diagnostics are in one plane only

- Single pulse experiment
 - About 150 extractions (integrated intensity < 3 10¹⁵ protons)
 - One extraction every ~30 minutes

- Proton beam properties change from pulse to pulse
 - Repetitions possible

#	bunch/pulse	PS (h=8) buckets filled	 B-field [T]		Hor. displaced [mm]	repetition
9	4	1-2-3-4	0		0	2
11	4		5			2
13	4		10			2
15	4		15			2
17	4			·	5	2
19	4				+2.5	2
21	4				-2.5	2
23	4				-5	2
					••	
45		1-2-3-6		-		2
47		1-2-3-7		•		2
49		1-2-3-8				2
	••	•	 		••	
150						

Not all beam properties and variations shown.

- Full program needs ~3 weeks of beam time
 - No night shifts: release of accumulated oxygen
 - Does not include time for initial beam tuning

- **2003**
 - Autumn LOI
- **2004**
 - Spring proposal to INTC
 - Summer detailed study at CERN (ongoing)
 - Summer solenoid construction launched
- **2005**
 - January solenoid delivered to MIT
 - Spring purchase of power supply
 - Summer solenoid test finished
- **2006**

- January Construction of mercury loop
- Winter installation at CERN during shut-down
- **2007**
 - spring final run at PS start-up
 - 3 weeks of PS beam time
 - Does not include beam tuning
 - 3 weeks of removal and reinstallation for nToF operation

approx 2.5 MChF excl. staff

- proof-of-principle target test
 - Designed for multi-MW proton beams
 - jet target in a high magnetic field exposed to a proton beam
- Broad spectrum of beam properties requested
 Profit from the enormous PS capabilities
- Envisaged run date: spring 2007