

Target Design Meeting

Nozzle & Hg Collection Tests, Design Requirements, Instrumentation, Containment, Windows, Diagnostics, Controls, Base Support Structure, ...

Van Graves, Phil Spampinato

Joseph Henry Laboratories Princeton University November 15-16, 2004

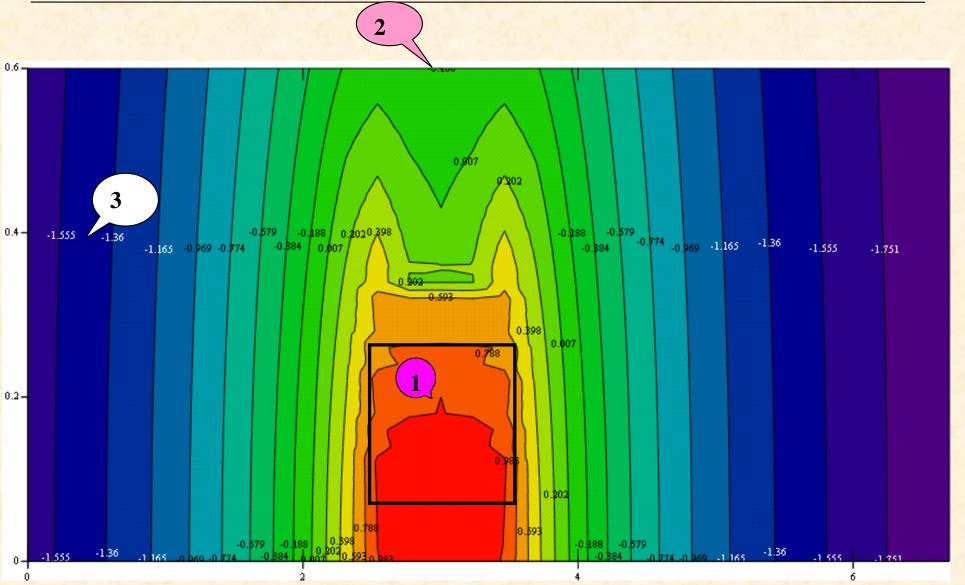
Topics/Issues For Discussion

- Need an interpretation of the requirements in ISO 2919, Table 2, Class 2
 - Temperature: -40°C to 80°C
 - External pressure: 25 kPa (60 psi) to atmospheric
 - Impact: 50 grams from 1 meter
 - Vibration: 3 X @ 10 minutes; 25-500 Hz @ 49 m/s²
 - Puncture: 1 gram from 1 meter

Position of the nozzle relative to the PB line

- Can the jet be above the PB line with a 60-cm interaction length?
- Must the jet have a 100 mrad angle with the B-axis?

Containment (air activation)


 air atmosphere in the primary and secondary containments, not He in the solenoid bore (~0.3 m³ of air)

Stray magnetic fields

- Can the base support structure be carbon steel?
- Will the motor/magnet operate properly in modest fields, for example
 - impeller at 1750 rpm in a ~0.1 T field (#3 in next slide)

Stray Magnetic Field Plot Magnetic field distribution: the axes are in meters; the rectangle is one half of the solenoid.

 $(xyz_0, xyz_1, log(xyz_2))$ **OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY**

- Can the G-10 cylinder support the target insert tube and the contained Hg?
- What are the dimensional tolerances for the tube?
- Diagnostic windows
 - Viewing locations: how many and where?

Assembly/Installation

 Need for fiducials (optical targets) on the solenoid and the target system for precise alignment of target, magnet, and beam line

Installation at CERN

- What are the constraints for lowering components into the tunnel area
- What is the maximum "foot print" for maneuvering components into the TT2A tunnel
- Control room layout
- Others ...

Hg Target System Instrumentation:

- Vapor monitor in secondary containment, 5 minute sampling rate; remote readout (Jerome)
- Flow meter (venturi ??) to monitor velocity in supply tube; remote readout
- Temperature to monitor sump tank; remote readout
- Level sensor to monitor sump tank; remote readout

Electrical Requirements

- 3-Phase, 460 VAC/90 A, 5060 Hz for the pump drive motor
- Variable frequency drive, manual or computer controlled
 - Interfaces with solenoid control system and proton beam control system
 - Emergency shut off coupled to PB line emergency shutoff, as well as manual override

Hg Target Operating Scenario

Preliminary Hg Target System Normal Operating Scenario

Time (sec.)	Solenoid	Target	Proton Beam
0-30.0		Ramp to 20 m/s	-
30.0-39.5	Ramp to full current	Maintain 20 m/s	
39.5-40.5	Maintain full current	Maintain 20 m/s	24 GeV, 1 MW
40.5-41.0	Begin de- energizing	Shut down pump	
41.0-45.0	De-energize to zero		
45.0-1800.0	Cool down to ~80°K	Stand by	Stand by

Princeton Tests Using 20-Hp Pump

Assess nozzle characteristics

 Change velocity at nozzle (10, 15, 20, 25, ... m/s), plot jet profile

Assess Hg "catcher" configurations for

- Turbulence
- Back splash
- Volumetric recovery

Test Data Is Needed ASAP!

